Search results for "Avoided crossing"
showing 7 items of 7 documents
Long-range interactions and the sign of natural amplitudes in two-electron systems
2013
In singlet two-electron systems the natural occupation numbers of the one-particle reduced density matrix are given as squares of the natural amplitudes which are defined as the expansion coefficients of the two-electron wave function in a natural orbital basis. In this work we relate the sign of the natural amplitudes to the nature of the two-body interaction. We show that long-range Coulomb-type interactions are responsible for the appearance of positive amplitudes and give both analytical and numerical examples that illustrate how the long-distance structure of the wave function affects these amplitudes. We further demonstrate that the amplitudes show an avoided crossing behavior as func…
Three-state Landau-Zener model in the presence of dissipation
2019
A population transfer based on adiabatic evolutions in a three-state system undergoing an avoided crossing is considered. The efficiency of the process is analyzed in connection with the relevant parameters, bringing to light an important role of the phases of the coupling constants. The role of dissipation is also taken into account, focusing on external decays that can be described by effective non-Hermitian Hamiltonians. Though the population transfer turns out to be quite sensitive to the decay processes, for very large decay rates the occurrence of a Zeno-phenomenon allows for restoring a very high efficiency.
A mutliconfigurational study of low-lying electronic states of KO
1992
Abstract Potential energy curves and spectroscopic parameters of several electronic states of the KO molecule have been calculated using multi-configurational methods. The KO B 2Π state, first time theoretically described, presents a strong avoided crossing with the A 2Π state, and allows for the explanation of the observed fluorescence of the KO molecule. Eleven electronic states have been studied at all the internuclear distances. Effects of complete active space and basis set selections on the results are also analyzed.
The multi-state CASPT2 method
1998
Abstract An extension of the multiconfigurational second-order perturbation approach CASPT2 is suggested, where several electronic states are coupled at second order via an effective-Hamiltonian approach. The method has been implemented into the MOLCAS-4 program system, where it will replace the single-state CASPT2 program. The accuracy of the method is illustrated through calculations of the ionic-neutral avoided crossing in the potential curves for LiF and of the valence-Rydberg mixing in the V-state of the ethylene molecule.
Steepest entropy ascent for two-state systems with slowly varying Hamiltonians.
2018
The steepest entropy ascent approach is considered and applied to two-state systems. When the Hamiltonian of the system is time-dependent, the principle of maximum entropy production can still be exploited; arguments to support this fact are given. In the limit of slowly varying Hamiltonians, which allows for the adiabatic approximation for the unitary part of the dynamics, the system exhibits significant robustness to the thermalization process. Specific examples such as a spin in a rotating field and a generic two-state system undergoing an avoided crossing are considered.
Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization
2000
In this paper we use ab initio multiconfigurational second-order perturbation theory to establish the intrinsic photoisomerization path model of retinal chromophores. This is accomplished by computing the ground state ( S 0 ) and the first two singlet excited-state ( S 1 , S 2 ) energies along the rigorously determined photoisomerization coordinate of the rhodopsin chromophore model 4- cis -γ-methylnona-2,4,6,8-tetraeniminium cation and the bacteriorhodopsin chromophore model all- trans -hepta-2,4,6-trieniminium cation in isolated conditions. The computed S 2 and S 1 energy profiles do not show any avoided crossing feature along the S 1 reaction path and maintain an energy gap >20 kcal⋅…
Potential construction of the B (1) 1 Π state in KCs based on Fourier-Transform spectroscopy data
2015
Abstract The paper presents an empirical pointwise potential energy curve (PEC) of the extensively perturbed B ( 1 ) 1 Π state of the KCs molecule constructed by applying an Inverted Perturbation Approach routine. The experimental term values in the energy range E ( v ′ , J ′ ) ∈ [ 14071 ; 15502 ] cm − 1 involved in the fit were based on Fourier-Transform spectroscopy data obtained with 0.01 cm−1 accuracy from laser-induced B ( 1 ) 1 Π → X 1 Σ + fluorescence spectra in the present work (654 term values) combined with 520 term values from Birzniece et al. (2012) . The data set included vibrational v ′ ∈ [ 0 , 35 ] and rotational J ′ ∈ [ 7 , 233 ] quantum numbers covering about 85% of the pot…